×
Aircraft / Aviation Vehicles & Artillery Infantry Arms Warships & Submarines Military Ranks Military Pay Chart (2024)
HOME
AVIATION INDEX
MODERN AIR FORCES
AIRCRAFT BY COUNTRY
AIRCRAFT MANUFACTURERS
COMPARE AIRCRAFT
AIRCRAFT BY CONFLICT
AIRCRAFT BY TYPE
AIRCRAFT BY DECADE
WWII AIRCRAFT
Aviation / Aerospace

Mitsubishi J8M (Shusui)


Rocket-Powered Interceptor Aircraft [ 1945 ]



The Mitsubishi J8M rocket-propelled interceptor was based on the German Messerschmitt Me 163 Komet - acquired by Japan via purchase of manufacturing rights.



Authored By: Staff Writer | Last Edited: 06/04/2019 | Content ©www.MilitaryFactory.com | The following text is exclusive to this site.

VIEW SPECIFICATIONS [+]
The Empire of Japan and the nation of Germany had maintained a relationship since Prussian authorities made diplomatic contact on the Japanese mainland in 1860. However, World War 1 (1914-1918) delayed a forged alliance when Japan found itself against the German Empire and claimed several German territories in the Asia-Pacific region. During the interwar years that followed, the two nations would adopt similar militaristic-driven governments that controlled both political and military policy and this direction brought the two nations into agreement once more. Japan aligned with the Axis powers in World War 2 (1939-1945), joining Germany and Italy as principles in the fight though distances between the powers ultimately segregated combat into two defined fronts - the Pacific and European Campaigns.

During their alignment in World War 2, certain military agreements came to pass and one such resolution became availability of the technology driving the new German Messerschmitt Me 163 "Komet" rocket-powered interceptor. The Japanese government, not blind to the disastrous results of the Allied day/night bombing campaigns on Italy and Germany, understood the arrival of the high-altitude Boeing B-29 Superfortress would bring similar ruin to the Japanese mainland in time. Due to the advanced nature of the B-29, the heavy four-engined bomber could fly out of reach of available Japanese defenses including its interceptor arm. The Me 163 offered some hope - a supremely fast little aircraft outfitted with cannon armament designed exclusively to combat large bomber formations. Its rocket-powered nature ensured quick response times in achieving the required altitude prior to the bomber formation's arrival.

Of course this sort of evolutionary design came at a price for the rocket fuel powering the Walther engine allowed for just 7.5 minutes of flight time, limiting engagement to a few controlled swoops. The speed at which the Me 163 approached often led to pilots overshooting their intended targets at speed. Additionally, the German fuel mixture consisted of a highly volatile combination of "C-Stoff" (a hydrogen peroxide/methanol-hydrazine combination) mixed with an oxidizer in the form of "T-Stoff" - the mixture having a tendency to ignite and explode. Landing was accomplished by gliding onto its belly, a moment in flight which made the Me 163 extremely vulnerable to passing fighter aircraft. Regardless, the aircraft offered up massive performance benefits over traditional propeller-driven fighter types and turbojet technology was still in its infancy - leaving the Japanese Empire with little choice as to how to proceed.

The Japanese Empire secured the production rights to both the Messerschmitt airframe and the Walther HWK 509A series rocket engine that powered it in 1943. Localized production of both would make the Me 163 immediately available to Japanese aviators while at the same time providing a technological advantage of sorts concerning advanced rocket technology for Japanese engineers to evolve on their own. The Me 163 was already being utilized operationally over German territory with limited success and this showed the Japanese that the weapon could be a viable solution for their own defensive war being forced by the Americans in the Pacific. German factories produced some 300 Me 163 Komets before the end of the war and these claimed between 9 and 16 air victories according to conflicting records.

A complete Me 163 airframe, Messerschmitt technical blueprints and three example Walther rocket engines were stowed aboard two separate Japanese Navy submarines - RO-501 and I-29. RO-501 left Germany (Kiel) on March 30th, 1944 while the I-29 departed the French port of Lorient on April 16th, 1944. While en route, RO-501 was targeted, attacked and sunk by American forces on May 13th - its cargo lost to the deep. The I-29 managed to safely navigate to Singapore with its Me 163 blueprints and Walther engine examples intact.

Despite the loss of the RO-501 and its Me 163-related goods, the Japanese understood the German text and drawings enough to attempt to engineer the aircraft from scratch beginning in July of 1944. The storied concern of Mitsubishi was charged with developing the rocket-powered interceptor for use by the Imperial Japanese Army and the Navy - the project to be led by Mijiro Takahashi. The Army version would be designated as the "Ki-200" while the Navy mount was to be known as the J8M "Shusui" (translating to "Autumn Water", "Sword Stroke" and "Sharp Sword").

Mitsubishi produced a powerless glider to handle in-flight data gathering while also working on flyable prototype to help expedite development. A mockup of the latter was completed in September of 1944 and the powerless glider appeared in December. Naturally, the glider was put to the air first with a test pilot in the cockpit while being towed by a lead aircraft. The control system and handling was found to be adequate and development continued. Yokosuka was commissioned for construction of two more gliders for additional testing while work then began on a second flyable prototype. Testing proved the Japanese copy of the Walther engine somewhat underpowered compared to the original performance figures achieved by Germany though this could be offset with utilization of a lighter airframe. With data in hand and test flights proving the design sound, a consortium led by Mitsubishi (to include Nissan and Fuji) ramped up for airframe production while Yokosuka was gearing its lines for the Walther rocket engine as the "Ro.2".©MilitaryFactory.com
The first powered flight of a J8M prototype occurred on July 7th, 1945. However, after clearing take-off and beginning a climb, the engine cutout was activated due to half-full fuel tanks, disrupting all power to the rocket. Despite recovering from the ensuring stall, the test pilot managed to glide the aircraft to safe levels but landing was complicated by one of the wings clipping a building near the runway. The strike jarred the aircraft and the volatile fuel stores ignited, severely injuring the test pilot and completely destroying the aircraft. Test pilot Toyohiko Inuzuka would die of his injuries the following day.

The accident expectedly forced a delay to all scheduled J8M flights while the engines were being reworked to help counter the fatal flaw. In August of 1945, Mitsubishi managed a redesigned J8M in the "J8M2" and manufacturing capabilities were almost ready for serial production of the aircraft. However, the Empire of Japan was forced into surrender through several unfolding events - the Americans had showcased their atomic bombs to deadly effect on Hiroshima and Nagasaki, the Allied bombing campaign had severely disrupted local Japanese war-making capacity, Japanese territorial losses in Asia and the Pacific further restricted availability to natural resources and the Japanese Navy was neutered from years of irrecoverable losses at sea - primarily to its carrier fleet at the hands of the United States Navy. Much of what remained were fanatical island defenders cut off from any prospect of hope with no option to surrender honorably.

The Empire of Japan therefore capitulated on August 15th, 1945, officially ending World War 2 as a whole. The surrender would be signed on the deck of the American battleship USS Missouri on September 2nd 1945 and the Japanese defense industry would be dismantled for the foreseeable future. With the collapse of the Japanese Empire, the Mitsubishi J8M project also came to an end. All existing examples were confiscated by the Allies for evaluation and ultimate destruction. At war's end, some 60 training airframes had been completed while 7 of the combat-capable versions were available.

Overall, there were five defined variants in the J8M family line. The J8M1 was the initial aircraft designation armed with 2 x 30mm cannons and this was followed by the J8M2 for the IJN with its 1 x 30mm cannon armament. The J8M3 would have featured an elongated fuselage and wider wing span while being powered by a Tokuro-3 series engine of 4,400lbs thrust. Training versions by Yokosuka included the MXY-8 "Akigusa" based on the original J8M production model and the MXY-9 "Shuka", this being powered by a Tsu-11 thermojet engine - the Tsu-11 relying on a 4-cylinder inverted inline engine coupled to a single-stage compressor with fuel-injection system collectively (when ignited) producing thrust output via rather primitive means.

The Japanese end-product was highly similar to the original German Messerschmitt series complete with a short, stout fuselage housing a single-seat cockpit, well swept-back wing assemblies and a single vertical tail fin. Armament would have been 1 or 2 x 30mm cannons. The rocket engine was set within the fuselage and exhausted through a circular port under the vertical tail fin at rear. The volatile combination of T-Stoff and C-Stoff was retained and known to Japanese engineers as "Ko" and "Otsu" respectively. The pilot sat under a glazed canopy that hinged to the right side while his rear view was obscured by the raised fuselage spine. The Mitsubishi design would take off and land in much the same way as the Me 163 - via a jettisonable two-wheeled dolly for take-off and land on a skid located on the belly of the fuselage.

Overall, the rocket-propelled interceptor proved something of a technological dead-end from a tactical perspective - rocket powered vehicles being later used for weaponry, testing flight envelopes, breaking the sound barrier and ultimately reaching space. The "turbojet" engine had officially arrived and signified the new way of things, quickly supplanting the rocket engine as the next generation propulsion system. The Me 163 itself proved only a marginal success for the Germans and its reach over the skies of Japan may have met a similar fate. By mid-1945, the Pacific War was going to be won by the Allies regardless of the J8M's introduction into service - though the little aircraft provided the Empire of Japan with a fighting chance nonetheless.©MilitaryFactory.com
Note: The above text is EXCLUSIVE to the site www.MilitaryFactory.com. It is the product of many hours of research and work made possible with the help of contributors, veterans, insiders, and topic specialists. If you happen upon this text anywhere else on the internet or in print, please let us know at MilitaryFactory AT gmail DOT com so that we may take appropriate action against the offender / offending site and continue to protect this original work.

Specifications



Service Year
1945

Origin
Imperial Japan national flag graphic
Imperial Japan

Status
RETIRED
Not in Service.
Crew
1

Production
67
UNITS


National flag of modern Japan Imperial Japan
(OPERATORS list includes past, present, and future operators when applicable)
Interception
Ability to intercept inbound aerial threats by way of high-performance, typically speed and rate-of-climb.


Length
19.7 ft
(6.00 m)
Width/Span
31.2 ft
(9.50 m)
Height
8.8 ft
(2.68 m)
Empty Wgt
3,186 lb
(1,445 kg)
MTOW
8,532 lb
(3,870 kg)
Wgt Diff
+5,346 lb
(+2,425 kg)
(Showcased structural values pertain to the Mitsubishi J8M1 (Shusui) (Ki-200) production variant)
Installed: 1 x Toku Ro.2 rocket engine delivering 3,300lb of thrust.
Max Speed
559 mph
(900 kph | 486 kts)
Ceiling
39,370 ft
(12,000 m | 7 mi)
Rate-of-Climb
9,800 ft/min
(2,987 m/min)


♦ MACH Regime (Sonic)
Sub
Trans
Super
Hyper
HiHyper
ReEntry
RANGES (MPH) Subsonic: <614mph | Transonic: 614-921 | Supersonic: 921-3836 | Hypersonic: 3836-7673 | Hi-Hypersonic: 7673-19180 | Reentry: >19030


(Showcased performance specifications pertain to the Mitsubishi J8M1 (Shusui) (Ki-200) production variant. Performance specifications showcased above are subject to environmental factors as well as aircraft configuration. Estimates are made when Real Data not available. Compare this aircraft entry against any other in our database or View aircraft by powerplant type)
STANDARD:
1 OR 2 x 30mm Type 5/Ho-155 cannons


Supported Types


Graphical image of an aircraft automatic cannon


(Not all ordnance types may be represented in the showcase above)
Hardpoint Mountings: 0


J8M - Base series designation; primary IJN designation.
J8M1 - Initial model; 2 x 30mm cannon armament.
J8M2 - Second model intended for IJN based on the J8M1; 1 x 30mm cannon armament.
J8M3 - Intended for IJA and IJN; widened wingspan and lengthened fuselage; fitted with Tokuro-3 series engine of 4,400lbs thrust.
Ki-200 - IJA Designation of J8M
Ki-202 - Proposed Ki-200 follow-up for the IJA intended to provide increased flight time from rocket engine.
MXY-8 - Yokosuka-produced glider for training based on the J8M.
MXY-9 - Yokosuka-produced glider for training based on the J8M; fitted with Tsu-11 thermojet engine.


General Assessment
Firepower  
Performance  
Survivability  
Versatility  
Impact  
Values are derrived from a variety of categories related to the design, overall function, and historical influence of this aircraft in aviation history.
Overall Rating
The overall rating takes into account over 60 individual factors related to this aircraft entry.
44
Rating is out of a possible 100 points.
Relative Maximum Speed
Hi: 750mph
Lo: 375mph
This entry's maximum listed speed (559mph).

Graph average of 563 miles-per-hour.
Max Altitude Visualization
Small airplane graphic
Aviation Era Span
Pie graph section
Showcasing era cross-over of this aircraft design.
Unit Production (67)
67
36183
44000
Compared against Ilyushin IL-2 (military) and Cessna 172 (civilian).
>>

Military lapel ribbon for Operation Allied Force
Military lapel ribbon for the Arab-Israeli War
Military lapel ribbon for the Battle of Britain
Military lapel ribbon for the Battle of Midway
Military lapel ribbon for the Berlin Airlift
Military lapel ribbon for the Chaco War
Military lapel ribbon for the Cold War
Military lapel ribbon for the Cuban Missile Crisis
Military lapel ribbon for pioneering aircraft
Military lapel ribbon for the Falklands War
Military lapel ribbon for the French-Indochina War
Military lapel ribbon for the Golden Age of Flight
Military lapel ribbon for the 1991 Gulf War
Military lapel ribbon for the Indo-Pak Wars
Military lapel ribbon for the Iran-Iraq War
Military lapel ribbon for the Korean War
Military lapel ribbon for the 1982 Lebanon War
Military lapel ribbon for the Malayan Emergency
Military lapel ribbon representing modern aircraft
Military lapel ribbon for the attack on Pearl Harbor
Military lapel ribbon for the Six Day War
Military lapel ribbon for the Soviet-Afghan War
Military lapel ribbon for the Spanish Civil War
Military lapel ribbon for the Suez Crisis
Military lapel ribbon for the Ukranian-Russian War
Military lapel ribbon for the Vietnam War
Military lapel ribbon for Warsaw Pact of the Cold War-era
Military lapel ribbon for the WASP (WW2)
Military lapel ribbon for the World War 1
Military lapel ribbon for the World War 2
Military lapel ribbon for the Yom Kippur War
Military lapel ribbon for experimental x-plane aircraft


Ribbon graphics not necessarily indicative of actual historical campaign ribbons. Ribbons are clickable to their respective aerial campaigns / operations / aviation periods.

Images Gallery



1 / 3
Image of the Mitsubishi J8M (Shusui)
Image from the Public Domain.
2 / 3
Image of the Mitsubishi J8M (Shusui)
Image from the Public Domain.
3 / 3
Image of the Mitsubishi J8M (Shusui)
Image from the Public Domain.

Disclaimer | Privacy Policy | Cookies

2024 Military Pay Chart Military Ranks DoD Dictionary Conversion Calculators Military Alphabet Code Military Map Symbols

The "Military Factory" name and MilitaryFactory.com logo are registered ® U.S. trademarks protected by all applicable domestic and international intellectual property laws. All written content, illustrations, and photography are unique to this website (unless where indicated) and not for reuse/reproduction in any form. Material presented throughout this website is for historical and entertainment value only and should not to be construed as usable for hardware restoration, maintenance, or general operation. We do not sell any of the items showcased on this site. Please direct all other inquiries to militaryfactory AT gmail.com. No A.I. was used in the generation of this content; site is 100% curated by humans.

Part of a network of sites that includes GlobalFirepower, a data-driven property used in ranking the top military powers of the world, WDMMA.org (World Directory of Modern Military Aircraft), WDMMW.org (World Directory of Modern Military Warships), SR71blackbird.org, detailing the history of the world's most iconic spyplane, and MilitaryRibbons.info, cataloguing military medals and ribbons. Special Interest: RailRoad Junction, the locomotive encyclopedia.


©2023 www.MilitaryFactory.com • All Rights Reserved • Content ©2003-2023 (20yrs)